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Abstract The influence of the mechanical strain on the
artificial protein L24 (acetyl-K2-L24-K2-amide) has been
studied at the molecular mechanics (MM) level of theory.
The effect of the surrounding environment (DPPC mole-
cules) has been observed during the stretching or compress-
ing of the L24. The calculations gave the view on the
structural changes occurring during these processes. All
calculations were done using the GROMACS code with the
ffgmx forcefield enhanced with lipid-protein interaction
potentials.
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Introduction

Proteins are the basic compounds from which life itself is
formed. Understanding of elementary processes that take
place at the nano-scale has a crucial role in the understand-
ing of their capabilities, such as folding, synthesis or their
function itself. Proteins are by no means random statistical
molecules. Their function usually involves mechanical
movement of several parts while preserving configuration
of others. Considering these parts are individual secondary
structure sequences, their mechanical properties play a
fundamental role in the protein functionality.

For the purpose of the study of their elasticity properties
we have chosen the L24 artificial peptide. This peptide
belongs to the group of membrane peptides where the lipid-
protein interactions are of special importance due to the
wide variety of the functions they perform in the cells, such
as, e.g., receptor activity, energy transduction or active
transport. In order to overcome the problem of the
complicated structure of the integral proteins and their
isolation and purification, chemically synthesized peptide
models of specific regions of natural membrane proteins
have been used in biophysical studies of the mechanisms of
protein-lipid interactions [1–4]. Among others, the α-
helical peptide acetyl-K2-L24-K2-amide (L24) (Fig. 1), has
been successfully utilized as a model of the hydrophobic
transmembrane α-helical segments of integral proteins [5].
This peptide contains a long sequence of hydrophobic
leucine residues capped at both the N-and C-termini with
two positively charged, relatively polar lysine residues.
The central polyleucine region of this peptide was
designed to form an optimal stable α-helix which will
incorporate strongly into the hydrophobic environment of
the lipid core, while the dilysine caps were designed to
anchor the ends of these peptides to the polar surface of
the bilayer membrane (BLM) and to inhibit the lateral
aggregation of these peptides. Detailed biophysical
studies of the interaction of P24 or L24 [5, 6] or WALP
peptides [7] with BLM revealed the fact that incorporation
of these peptides into the phosphatidylcholine bilayers
resulted in the decrease of the ordering of the bilayer in a
gel state and increase of the ordering in a liquid crystalline
state.

In our work we studied how the secondary structure of
L24 would be resistant to applied force, what processes
occur during the stretching (compressing) and how thesur-
rounding environment affects all of this. This kind of study
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may provide basic data for designing or validating
parameters of the coarse grain approach to protein
simulations, which would take secondary structure sequen-
ces as its fundamental elements. This may eventually lead
to whole protein simulations on a sufficient timescale
(microseconds-seconds). These simulations are required

for the insight to the protein function mechanisms and are
presently unavailable due to the lack of computer power
needed for using the current methodology.

Huge progress in the experimental nano techniques
involving AFM microscopy make it also possible to verify
theoretical results, since it is now possible to observe and
manipulate individual molecules [8–14]. These type of
experiments are ideal for supporting the theoretical models
and for the testing of their predictions. Experimental works
have been done to test several different theoretical
approaches when studying elasticity. Good agreement was
found with the theory of polymer entropic elasticity [15],
when small force has been applied to single DNA molecule.
Applying bigger force (∼10 pN) however showed some
differences between the theory and experiments, caused by
inelastic deformation of the molecule skeleton [16]. These
differences were even bigger when the force (∼300 pN) was
applied to molecule using AFM tip [8]. It was shown that in
this case the difference occurred even between models that
involved elasticity of skeleton [16, 17]. Based on these

Fig. 1 L24 initial equilibrated geometry. Two emphasized carbons are
those being fixed in simulations, which simulate applying force

Fig. 2 L24 initial equilibrated geometry with surrounding 12 DPPC
molecules. Two emphasized carbons are those being fixed in
simulations, which simulate applying force. In simulations with DPPC
fixed also DPPC atoms are fixed, but only in the direction of stretch
(compression)-in Z direction. This should simulate integrity of
membrane
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Fig. 3 Energy distribution among forcefield terms observed in
simulation of stretching L24 in vacuum
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Fig. 4 Force required for stretching calculated from potential energy
as observed in simulation of stretching L24 in vacuum
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observations, new models involving equilibrium thermody-
namics [18–20] and molecular dynamics simulation have
been formed, trying to explain this phenomenon [21]. In
these models, kinetic aspect was included, which explained
additional extension of the skeleton with the conformation
change. It has been shown that this model is able to explain
visco-elastic properties of different types of polymers.
There have been experiments for example with the
molecule of titin (muscle protein) [9] and dextran (poly-
sacharide) [8] where multi level conformational character-
istics of molecules studied by Monte Carlo simulations
have been compared with experimental values. The kinetic
aspect of simulations and reversibility of the whole process
has been also observed.

These types of studies and the fact that chemistry of primary
structure of peptides is quite well known, suggest that molecular
mechanics simulation based on intermolecular potentials could
be a usefull tool to investigate peptide properties at reasonable
computing speed with minimum restrictions.

Methodology

Due to the facts mentioned in the introduction we
performed our simulations at the molecular mechanics level
of theory. We used GROMACS code [22] with forcefield
ffgmx as a simulation engine. This forcefield was originally
designed for the calculations that include proteins only,
therefore to compute contributions of environment (DPPC)
to overall properties we had to provide additional interaction-
potentials that would enable us to do such calculations. For
this purpose we altered the forcefield based on study made by
a group of authors [23], who were studying proteins
integrated in phospholipid membranes and tested this
approach.

Our method of implying force on the molecule consisted
of 2 steps. At first we did homogeneous stretch (compress)
of rescaled coordinates of all L24 atoms in Z direction (the
direction of lateral axis of peptide). Then we equilibrated
the system at zero temperature in vacuum with the ends of
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Fig. 5 Force required for compressing calculated from potential
energy as observed in simulation of compressing L24 in vacuum
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Fig. 6 Force required for stretching calculated from potential energy
as observed in simulation of stretching L24 with surrounding DPPC
fixed in Z direction
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Fig. 7 Force required for compressing calculated from potential
energy as observed in simulation of compressing L24 with surrounding
DPPC fixed in Z direction
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Fig. 8 Force required for stretching calculated from potential energy
as observed in simulation of stretching L24 with surrounding DPPC
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the molecule fixed to its coordinates. The length of one stretch
or compression step was 0.002 nm. Since we performed only
a set of minimizations to investigate structural and energetic
changes, there was no time parameter involved. We repeated
the same procedure with free DPPC molecules organized to
bilayer as environment and also with DPPC fixed in Z
direction. Figures 1 and 2 present the images of our starting
equilibrated geometries. Two highlighted atoms at the ends
of peptide are those carbons which are being fixed during the
simulations. In the simulation in vacuum the system consists
only of L24 peptide (see Fig. 1) (547 atoms). In the
simulation with DPPC environment system consists of L24

peptide and 12 DPPC molecules formed in two rings (see
Fig. 2) (totally 2107 atoms). The system was simulated in
cluster boundary conditions-no periodic box was present.
Electrostatic charges were obtained from aminoacid database
which is a part of the used forcefield. Charges in amino acids
correspond to natural cell environment (pH∼5.5) and were
constant in all minimizations.

To test MM methodology and the conditions, we were
observing the energy distribution among forcefield terms in
our simulations. Doing this we found the limits of our
approach. Original L24 was 3.86 nm long and during the
simulation it was stretched up to 10.5 nm, however as
Fig. 3 shows, the results beyond 10.0 nm are not realistic
and normally a bond break would occur since too much
energy is distributed to bond terms. After some testing runs,
where we optimized the simulation step and convergence
criteria we obtained the following results (Figs. 4, 5, 6, 7, 8,
and 9). These graphs were obtained from analytic deriva-
tion of precisely computed potential energy.

Results and discussion

Figures 4, 5, 6, 7, 8, and 9 show that the effect of applied
force is not continuous. Each jump on graphs is caused by

sudden conformation change caused by applied force. An
example of such change observed in simulation of stretch-
ing without DPPC is presented in Fig. 10a,b. As we can see
the highlighted H-bond, which stabilizes the molecule, is
broken, a new one is formed and the system changes the
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Fig. 10 a) Starting geometry of example of 1–3 to 1–2 H-bond jump.
H-bond O(0) to H on N(3) will be broken and a new one will be
formed with O(0) to H on N(2). This change is coupled with change of
conformation, what results in sudden release of strain as observed in
all force graphs. b) Final geometry of example of 1–3 to 1–2 H-bond
jump. H-bond O(0) to H on N(3) was broken and a new one was
formed with O(0) to H on N(2). c) Step 1034 minimization. Example
of H-bond H1-A1, H2-A1 lengths change corresponding to Fig. 10a,b.
A1 resembles oxygen in our case, H1, H2 are two different hydrogens
on which the H-bond jump occurs. d) Step 1034 minimization.
Example of H-bond HDA angle change corresponding to Fig. 10a,b.
D1, D2, H1, H2 resembles two different nitrogens (hydrogens), A1
resembles oxygen on which the H-bond jump occurs
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conformation. This change cannot be normally undone.
After releasing ends of the helix, it stays in this new
conformation. This is the prime reason why the stretching
and compression is not elastic according to Hook's theorem
and why there are so many irregular jumps on the graphs.

We could distinguish several stages of conformational
changes, in which different types of H-bonds jumps
occurred when we were observing L24 stretched alone.
The type shown on pictures (Fig. 10a,b) responds to 1–3 to
1–2 jump. Better quantitative insight of this jump is given

by graphs Fig. 10c,d. This type is responsible for periodical
force jumps (Fig. 4) in the range of 5.5 nm–7.5 nm.
Untwisting and H-bond jumping occurs from N-end of the
peptide. This end is probably less stable due to inherent
asymmetry of peptide chain of the molecule. According to
Fig. 3, MM method is not suitable for stretching larger than
10.0 nm or as in our case for applying force larger than
∼2500 pN, since the bonds are stretched to the extend,
where the classical description in terms of forcefield looses
its validity and normally covalent bond breaking would
probably occur.

When applying the compression to L24 alone, the
molecule first undergoes an elastic bend. After being
compressed to the size 2.8 nm (1 nm compress from its
original size) it broke in the middle into two parts (see
Fig. 5). Force required for compressing is much smaller
than for stretching, this is due to the fact that the molecule
was actually not compressed like a helical spring, but rather
bent like a stick and then locally unfolded (Fig. 11a,b). H-
bonds have stabilizing effect not only when the stretching is
applied. They maintain a certain helix size and they make
the molecule rigid rather than flexible.

Generally DPPC surroundings put a high degree of
irregularity to the problem and gave L24 a higher level of
stability. It discarded a step-wise look of the stretch process
and different types of structure changes occur in apparent
random order, depending on starting position of DPPC
molecules. Simulation with fixed DPPC caused huge
increase of force required for stretching (Fig. 6), this was
due to the fact that big force has been required for the
pulling of the polar ends out of membrane. When we repeat
the simulation with free DPPC the increase is not that
obvious (Fig. 8), but this behavior is rather strange, since
the surrounding DPPC were attached to the ends of L24 and
moved with them as L24 was stretching (Fig. 12a,b). In this
case untwisting and H-bond breaking occurred form the
middle of the peptide, where no DPPC was present.

The effect of the compression of L24 when DPPC was
fixed in the Z direction also gave very interesting results.
The environment again had a stabilizing effect, which can
be seen in Fig. 7. The force which is required for
compressing is almost five times bigger than without
DPPC. L24 did not unfold into two rigid parts like in
Fig. 5. The character of the compression has been
completely changed-it resembles as if only the two atoms
we kept fixed were affected by force-pushing them closer,
despite the fact that all L24 atom coordinates were trans-
formed before each minimization. The peptide completely
unfolded from its N-end, i.e., all stabilizing H-bonds have
been disturbed in this end. The destabilized part behaved
like free polymer thread, while the rest of the peptide
remained in its helical form. This again demonstrates the
size of the stabilizing effect of the surrounding DPPC on

Fig. 11 a) Intermediate step of compressing of L24 in vacuum in
range about 0.8 nm compressed. Bending is already apparent. b)
Intermediate step of compressing of L24 in vacuum in range about
1.1 nm compressed. Helical structure is broken into two separated
parts, but both of them keep their original helical structure

Fig. 12 a) L24 initial equilibrated geometry with surrounding 12
DPPC molecules (free in all directions) prepared for stretching. b) L24

geometry with surrounding 12 DPPC molecules (free in all directions)
after applied stretching. Untwisting of L24 take place in middle part
where no stabilizing effect of DPPC is present. This figure also
demonstrates how Lysine anchors stick to polar heads of DPPC
molecules, which in effect follow stretched molecule
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the helical structure of the peptide. In the process of
compression L24 peptide pushed away two DPPC mole-
cules as can be seen in Fig. 13a and b. Anomalous behavior
can be seen on Fig. 7 for the range 2.0–2.5 nm which shows
numeric limits of our force calculating method. The com-
pression with free DPPC caused all DPPC molecules to
follow polar ends just like in the free stretching and big lipid
globule around the bended L24 has been formed (Fig. 9).

These and similar results can be further used for better
qualitative understanding of mechanical properties of the
secondary structure fragments of the peptides. Quantita-
tively it can be used for designing or validating the
appropriate coarse grained parameters.

Conclusions

The application of the MM method for the study of the
model peptides can be a useful tool for the explanation
of the force effect on molecules. We have shown that the
inelastic change of the conformation of the peptides
causes abrupt changes in the structure of the peptides.
The influence of the force (stretching, compressing) is
reduced by stabilizing effect of H-bond. This effect is
quite high, causing the peptide to resemble a rather rigid
stick more than elastic spring. Interaction with neighbor
lipid molecules further stabilized the rod-like structure of
this peptide. The lysine anchor groups effectively interact
with polar heads of surrounding lipids, thus when
embedded into the membrane the size mismatch can
cause the local deformation of the membrane.
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